National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Computer modeling of high-entropy alloys
Papež, Pavel ; Jan, Vít (referee) ; Zelený, Martin (advisor)
This Master’s thesis is focused on theoretical study of the high entropy alloy CoCrNi using ab initio calculations. The focus was on the effect of short range order on the relative stability of FCC and HCP structures and the value of stacking fault energy.The results show increase of stability in both types of structures wtih decreasing number of Cr-Cr nearest neighbours. The effect of the number of Cr-Cr nearest neighbours on the stacking fault energy previously shown in literature was not observed. However the strong dependency was found on the change of short range order caused by the shift of (1 1 1) planes after the transformation from the FCC to HCP structure. The effect of interstitial atoms C a N was also studied. Both these interstitials stabilise FCC structure and thus cause the increase of stacking fault energy. Both interstitials prefer octahedral positions with higher amount of Cr in their nearest neighbour shell.
Computer modeling of high-entropy alloys
Papež, Pavel ; Jan, Vít (referee) ; Zelený, Martin (advisor)
This Master’s thesis is focused on theoretical study of the high entropy alloy CoCrNi using ab initio calculations. The focus was on the effect of short range order on the relative stability of FCC and HCP structures and the value of stacking fault energy.The results show increase of stability in both types of structures wtih decreasing number of Cr-Cr nearest neighbours. The effect of the number of Cr-Cr nearest neighbours on the stacking fault energy previously shown in literature was not observed. However the strong dependency was found on the change of short range order caused by the shift of (1 1 1) planes after the transformation from the FCC to HCP structure. The effect of interstitial atoms C a N was also studied. Both these interstitials stabilise FCC structure and thus cause the increase of stacking fault energy. Both interstitials prefer octahedral positions with higher amount of Cr in their nearest neighbour shell.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.